

Tetrahedron Letters 42 (2001) 5953-5954

TETRAHEDRON LETTERS

A concise, stereoselective synthesis of *meso-2*,6-diaminopimelic acid (DAP)

Philip N. Collier,^a Ian Patel^b and Richard J. K. Taylor^{a,*}

^aDepartment of Chemistry, University of York, Heslington, York YO10 5DD, UK ^bAstraZeneca, Avlon Works, Severn Road, Hallen, Bristol BS10 7ZE, UK

Received 11 June 2001; accepted 28 June 2001

Abstract—The preparation of *meso*-2,6-diaminopimelic acid 1 is described. The key step in the synthesis is Suzuki coupling of the novel organoboron homoalanine equivalent 3 with methyl (2Z)-3-bromo-2-[(*tert*-butoxycarbonyl)amino]-2-propenoate 5. \bigcirc 2001 Elsevier Science Ltd. All rights reserved.

The development of efficient synthetic routes to diaminopimelic acid (DAP) stereoisomers and their analogues has been the focus of considerable recent attention.¹ meso-DAP 1, which is the direct biosynthetic precursor of lysine via the action of meso-DAP decarboxylase, is essential for the growth of bacteria and higher plants.² In addition, meso-DAP confers structural rigidity to many bacteria by cross-linking the polysaccharides of their cell wall peptidoglycan units. The lysine and peptidoglycan functions are not observed in mammalian biochemistry, hence the interest in utilising α, α' -diamino diacids (DADs) as potential antibiotics with low mammalian toxicity.³ The biological properties of DAP-containing peptides have also been reported and these include antiviral and antitumour activity.4

This letter describes a new synthesis of *meso*-DAP utilising our recently developed organoborane homoalanine anion equivalent 3^5 , which is readily prepared from the Garner aldehyde-derived alkene 2 (Scheme 1).⁶ We envisaged Suzuki coupling⁷ between organoborane 3 and a suitably functionalised alkenyl halide to provide the DAP skeleton; asymmetric hydrogenation and oxazolidine hydrolysis–oxidation would then reveal the natural product in protected form. The realisation of this approach is illustrated herein.

The key bromoenamide **5** required for Suzuki coupling with **3** was prepared in four straightforward steps from *N*-Boc-serine in 72% overall yield (Scheme 1).^{8,9} The *Z*-configuration of **5** was assigned on the basis of the ${}^{3}J_{CH}$ coupling constant of 3.1 Hz between the ester carbonyl carbon and the vinylic proton (after selective decoupling of the ester methyl group and NH exchange

Scheme 1. Reagents and conditions: (a) MeI, K_2CO_3 , DMF; (b) MsCl, Et_3N , DCM; (c) NBS, DCM; (d) Et_3N , DCM (72% over four steps from 4); (e) 9-BBN, THF; (f) $PdCl_2(dppf) \cdot CHCl_3$, 3 M K_3PO_4 , THF–DMF (76% from 2).

^{*} Corresponding author. E-mail: rjkt1@york.ac.uk

^{0040-4039/01/\$ -} see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01150-9

Scheme 2. Reagents and conditions: (a) 250 psi H₂, [(COD)Rh((S,S)-Et-DuPHOS)]OTf, toluene, 60°C (7, 79%; 8, 15%); (b) TFA, MeOH, 0°C, 89%; (c) Jones' reagent, acetone; (d) TMSCHN₂, MeOH–toluene (72% from 8); (e) (i) 5 M HCl, 70°C; (ii) propylene oxide, EtOH (96% from 9).

with D₂O).⁸ We then carried out the Suzuki coupling procedure between organoborane **3** and bromoenamide **5**, using [1,1' - bis - (diphenylphosphino)ferrocene]dichloropalladium(II) [PdCl₂(dppf)·CHCl₃]⁷ as catalyst which proved successful in our earlier studies.⁵ We were delighted to obtain the desired dehydroamino acid derivative **6** from this reaction in 76% yield {[α]_D -4.6 (*c* 2.3, CHCl₃)}. We have previously shown that alkene stereochemistry is conserved in these types of Suzuki coupling reactions with Z-vinylbromides.⁵

Asymmetric hydrogenation of 6 was achieved using Burk's Rh(I)-(S,S)-Et-DuPHOS catalyst¹⁰ and gave the desired S-amino acid product 7 in 79% yield as a single diastereomer¹¹ (Scheme 2). Alcohol 8 (15%) was also obtained from this reaction. Oxazolidine 7 was converted into 8 using trifluoroacetic acid at 0°C. Oxidation of alcohol 8 was performed using Jones' reagent and the resulting acid was converted into meso-diester 9 using TMS-diazomethane. The symmetrical nature of compound 9 was established by proton NMR spectroscopy thus confirming the expected stereoselectivity of the (S,S)-ligand in the hydrogenation step.¹⁰ Hydrolysis of 9 with 5 M HCl at 70°C followed by treatment with propylene oxide furnished meso-DAP 1, which displayed spectroscopic properties consistent with those published [$\delta_{C=0}$ 173.0 ppm, lit.¹² $\delta_{C=0}$ 172.2 ppm; mp >300°C (dec.); lit.¹² mp >300°C (dec.)].

In principle the above method can be used for the preparation of (R,R)- and (S,S)-DAP simply by varying the choice of starting amino acid (L- or D-serine) used in the formation of alkene **2**, and the choice of rhodium catalyst [(R,R)- or (S,S)-Et-DuPHOS ligands). This methodology also allows for the preparation of differentially protected DAP analogues for incorporation into peptides. We are currently using this procedure to prepare (R,R)- and (S,S)-DAP and novel DAP analogues of biological interest.

Acknowledgements

The University of York and AstraZeneca are gratefully acknowledged for financial assistance (P.N.C.). We also thank Dr. Andrew D. Campbell for helpful discussions.

References

- (a) Caplan, J. F.; Zheng, R.; Blanchard, J. S.; Vederas, J. C. Org. Lett. 2000, 2, 3857–3860; (b) Paradisi, F.; Porzi, G.; Rinaldi, S.; Sandri, S. Tetrahedron: Asymmetry 2000, 11, 1259–1262; (c) Davis, F. A.; Srirajan, V. J. Org. Chem. 2000, 65, 3248–3251 and references cited therein to earlier research.
- 2. Gattschalk, G. *Bacterial Metabolism*; Springer: New York, 1979.
- (a) Cox, R. J. *Nat. Prod. Rep.* **1996**, *13*, 29–43; (b)
 Williams, R. M.; Fegley, G. J.; Gallegas, R.; Schaefer, F.;
 Preuss, D. L. *Tetrahedron* **1996**, *52*, 1149–1164 and references cited therein.
- (a) Oku, T.; Imanishi, J.; Kishida, T. Antiviral Res. 1986, 6, 733–739; (b) Kolodziejczyk, A. M.; Kolodziejczyk, A. S.; Stoev, S. Int. J. Peptide Protein Res. 1992, 39, 382– 387.
- (a) Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. *Tetrahedron Lett.* **1999**, *40*, 5263–5266; (b) For our related research in this area, see: Collier, P. N.; Campbell, A. D.; Patel, I.; Taylor, R. J. K. *Tetrahedron Lett.* **2000**, *41*, 7115–7119; (c) See also: Sabat, M.; Johnson, C. R. Org. Lett. **2000**, *2*, 1089–1092.
- Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. Synthesis 1998, 1707–1709.
- Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314–321.
- Compound 5, which is novel, was prepared using the method of: Miossec, B.; Danion-Bougot, R.; Danion, D. Synthesis 1994, 1171–1174.
- All novel compounds were fully characterised by NMR spectroscopy and HRMS.
- (a) Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125–10138; (b) See also: Holcomb, R. C.; Schow, S.; Ayral-Kaloustian, S.; Powell, D. Tetrahedron Lett. 1994, 35, 7005–7008.
- 11. Hydrogenation of **6** was also carried out under standard H_2 -Pd/C conditions to produce a mixture of **7** and the corresponding *R*-amino acid derivative (99%, 52:48). In the asymmetric reaction, the *R*-diastereomer could not be observed by 270 MHz ¹H NMR spectroscopy.
- 12. Arakawa, Y.; Goto, T.; Kawase, K.; Yoshifuji, S. Chem. Pharm. Bull. 1998, 46, 674–680.